Thermotaxis of Human Sperm Cells in Extraordinarily Shallow Temperature Gradients Over a Wide Range
نویسندگان
چکیده
On the basis of the finding that capacitated (ready to fertilize) rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C), that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 µm) it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.
منابع مشابه
Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation.
STUDY QUESTION What is the behavioral mechanism underlying the response of human spermatozoa to a temperature gradient in thermotaxis? SUMMARY ANSWER Human spermatozoa swim up a temperature gradient by modulating their speed and frequencies of hyperactivation events and turns. WHAT IS KNOWN ALREADY Capacitated human spermatozoa are capable of thermotactically responding to a temperature gra...
متن کاملInvolvement of calcium channels and intracellular calcium in bull sperm thermotaxis
Thermotaxis that sperm migrate to higher temperature area has been confirmed in rabbit and human. In this study, we examined the migration ability of bull sperm in a temperature gradient to confirm thermotaxis and elucidate the involvement of calcium in such thermotaxis, as well as the relation between sperm capacitation and bull fertility. Thermotaxis was evaluated in a temperature gradient of...
متن کاملInvolvement of Transient Receptor Potential Vanilloid (TRPV) 4 in mouse sperm thermotaxis
Transient Receptor Potential Vanilloid (TRPV) 4 is one of the temperature-sensitive ion channels involved in temperature receptors, and it is known to be activated from 35 to 40ºC. Here we analyzed sperm motility function of Trpv4 knockout (KO) mouse in temperature-gradient conditions to elucidate the thermotaxis of mouse sperm and the involvement of TRPV4 in thermotaxis. The sperm were introdu...
متن کاملBacterial thermotaxis by speed modulation.
Naturally occurring gradients often extend over relatively long distances such that their steepness is too small for bacteria to detect. We studied the bacterial behavior in such thermal gradients. We find that bacteria migrate along shallow thermal gradients due to a change in their swimming speed resulting from the effect of temperature on the intracellular pH, which also depends on the chemi...
متن کاملHeat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa
The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic...
متن کامل